Posted on Leave a comment

Set up an offline command line dictionary in Fedora

You don’t need an internet connection to have an easily searchable and extendable dictionary on your Fedora computer. You can use sdcv (StarDict under Console Version) and the public Stardict files on the default repositories to keep a local record for offline use. This article shows you how.

What is sdcv?

sdcv is a command line variant of Stardict. Stardict is a part of a long legacy of GUI offline dictionaries. The “dic” files it uses are formatted as a colon delimited file, with the word in first column and the definition in the second column. You can have multiple lines with the same word and different definitions. sdcv will provide you with a search function and formatted display of your results.

Installing sdcv

You can get started quickly with sdcv and the English dictionary by installing them from the default repos:

sudo dnf install sdcv stardict-dic-en

sdcv will be ready for use right away. If you want to see what other languages are available, use this command:

dnf search stardict

How to use sdcv

sdcv has an interactive and non-interactive mode. You can perform a quick search on a word or term using this command:

sdcv word

For example, you could search sdcv linux. Alternately, you can run sdcv by itself to activate interactive mode.

Customizing sdcv

sdcv has a –color option that adds coloring to the words and source of the definition. You can also use an alias to enable –color by default. Simply edit your shell resource file (default on Fedora is ~/.bashrc) to add this command:

alias sdcv="sdcv --color"

You can also use a more friendly name like this: 

alias describe="sdcv --color"

sdcv references /usr/share/stardic/dic by default, or it uses the path located in the shell variable STARDICT_DATA_DIR. You can also set up a personal dictionary in the file $HOME/.stardict/dic.

Fun facts

Believe it or not, the dict network protocol is still alive to this day. You can use it with the curl command by using a command like this to search for a word:

curl dict://dict.org/d:<word>

This pull definitions straight from the internet via your command line. Enjoy using sdcv!


Photo by Pisit Heng on Unsplash.

Posted on Leave a comment

Learning about Partitions and How to Create Them for Fedora

Operating system distributions try to craft a one size fits all partition layout for their file systems. Distributions cannot know the details about how your hardware is configured or how you use your system though. Do you have more than one storage drive? If so, you might be able to get a performance benefit by putting the write-heavy partitions (var and swap for example) on a separate drive from the others that tend to be more read-intensive since most drives cannot read and write at the same time. Or maybe you are running a database and have a small solid-state drive that would improve the database’s performance if its files are stored on the SSD.

The following sections attempt to describe in brief some of the historical reasons for separating some parts of the file system out into separate partitions so that you can make a more informed decision when you install your Linux operating system.

If you know more (or contradictory) historical details about the partitioning decisions that shaped the Linux operating systems used today, contribute what you know below in the comments section!

Common partitions and why or why not to create them

The boot partition

One of the reasons for putting the /boot directory on a separate partition was to ensure that the boot loader and kernel were located within the first 1024 cylinders of the disk. Most modern computers do not have the 1024 cylinder restriction. So for most people, this concern is no longer relevant. However, modern UEFI-based computers have a different restriction that makes it necessary to have a separate partition for the boot loader. UEFI-based computers require that the boot loader (which can be the Linux kernel directly) be on a FAT-formatted file system. The Linux operating system, however, requires a POSIX-compliant file system that can designate access permissions to individual files. Since FAT file systems do not support access permissions, the boot loader must be on a separate file system than the rest of the operating system on modern UEFI-based computers. A single partition cannot be formatted with more than one type of file system.

The var partition

One of the historical reasons for putting the /var directory on a separate partition was to prevent files that were frequently written to (/var/log/* for example) from filling up the entire drive. Since modern drives tend to be much larger and since other means like log rotation and disk quotas are available to manage storage utilization, putting /var on a separate partition may not be necessary. It is much easier to change a disk quota than it is to re-partition a drive.

Another reason for isolating /var was that file system corruption was much more common in the original version of the Linux Extended File System (EXT). The file systems that had more write activity were much more likely to be irreversibly corrupted by a power outage than those that did not. By partitioning the disk into separate file systems, one could limit the scope of the damage in the event of file system corruption. This concern is no longer as significant because modern file systems support journaling.

The home partition

Having /home on a separate partition makes it possible to re-format the other partitions without overwriting your home directories. However, because modern Linux distributions are much better at doing in-place operating system upgrades, re-formatting shouldn’t be needed as frequently as it might have been in the past.

It can still be useful to have /home on a separate partition if you have a dual-boot setup and want both operating systems to share the same home directories. Or if your operating system is installed on a file system that supports snapshots and rollbacks and you want to be able to rollback your operating system to an older snapshot without reverting the content in your user profiles. Even then, some file systems allow their descendant file systems to be rolled back independently, so it still may not be necessary to have a separate partition for /home. On ZFS, for example, one pool/partition can have multiple descendant file systems.

The swap partition

The swap partition reserves space for the contents of RAM to be written to permanent storage. There are pros and cons to having a swap partition. A pro of having swap memory is that it theoretically gives you time to gracefully shutdown unneeded applications before the OOM killer takes matters into its own hands. This might be important if the system is running mission-critical software that you don’t want abruptly terminated. A con might be that your system runs so slow when it starts swapping memory to disk that you’d rather the OOM killer take care of the problem for you.

Another use for swap memory is hibernation mode. This might be where the rule that the swap partition should be twice the size of your computer’s RAM originated. Ideally, you should be able to put a system into hibernation even if nearly all of its RAM is in use. Beware that Linux’s support for hibernation is not perfect. It is not uncommon that after a Linux system is resumed from hibernation some hardware devices are left in an inoperable state (for example, no video from the video card or no internet from the WiFi card).

In any case, having a swap partition is more a matter of taste. It is not required.

The root partition

The root partition (/) is the catch-all for all directories that have not been assigned to a separate partition. There is always at least one root partition. BIOS-based systems that are new enough to not have the 1024 cylinder limit can be configured with only a root partition and no others so that there is never a need to resize a partition or file system if space requirements change.

The EFI system partition

The EFI System Partition (ESP) serves the same purpose on UEFI-based computers as the boot partition did on the older BIOS-based computers. It contains the boot loader and kernel. Because the files on the ESP need to be accessible by the computer’s firmware, the ESP has a few restrictions that the older boot partition did not have. The restrictions are:

  1. The ESP must be formatted with a FAT file system (vfat in Anaconda)
  2. The ESP must have a special type-code (EF00 when using gdisk)

Because the older boot partition did not have file system or type-code restrictions, it is permissible to apply the above properties to the boot partition and use it as your ESP. Note, however, that the GRUB boot loader does not support combining the boot and ESP partitions. If you use GRUB, you will have to create a separate partition and mount it beneath the /boot directory.

The Boot Loader Specification (BLS) lists several reasons why it is ideal to use the legacy boot partition as your ESP. The reasons include:

  1. The UEFI firmware should be able to load the kernel directly. Having a separate, non-ESP compliant boot partition for the kernel prevents the UEFI firmware from being able to directly load the kernel.
  2. Nesting the ESP mount point three mount levels deep increases the likelihood that an intermediate mount could fail or otherwise be unavailable when needed. That is, requiring root (/), then boot (/boot), then efi (/efi) to be consecutively mounted is unnecessarily complex and prone to error.
  3. Requiring the boot loader to be able to read other partitions/disks which may be formatted with arbitrary file systems is non-trivial. Even when the boot loader does contain such code, the code that works at installation time can become outdated and fail to access the kernel/initrd after a file system update. This is currently true of GRUB’s ZFS file system driver, for example. You must be careful not to update your ZFS file system if you use the GRUB boot loader or else your system may not come back up the next time you reboot.

Besides the concerns listed above, it is a good idea to have your startup environment — up to and including your initramfs — on a single self-contained file system for recovery purposes. Suppose, for example, that you need to rollback your root file system because it has become corrupted or it has become infected with malware. If your kernel and initramfs are on the root file system, you may be unable to perform the recovery. By having the boot loader, kernel, and initramfs all on a single file system that is rarely accessed or updated, you can increase your chances of being able to recover the rest of your system.

In summary, there are many ways that you can layout your partitions and the type of hardware (BIOS or UEFI) and the brand of boot loader (GRUB, Syslinux or systemd-boot) are among the factors that will influence which layouts will work.

Other considerations

MBR vs. GPT

GUID Partition Table (GPT) is the newer partition format that supports larger disks. GPT was designed to work with the newer UEFI firmware. It is backward-compatible with the older Master Boot Record (MBR) partition format but not all boot loaders support the MBR boot method. GRUB and Syslinux support both MBR and UEFI, but systemd-boot only supports the newer UEFI boot method.

By using GPT now, you can increase the likelihood that your storage device, or an image of it, can be transferred over to a newer computer in the future should you wish to do so. If you have an older computer that natively supports only MBR-partitioned drives, you may need to add the inst.gpt parameter to Anaconda when starting the installer to get it to use the newer format. How to add the inst.gpt parameter is shown in the below video titled “Partitioning a BIOS Computer”.

If you use the GPT partition format on a BIOS-based computer, and you use the GRUB boot loader, you must additionally create a one megabyte biosboot partition at the start of your storage device. The biosboot partition is not needed by any other brand of boot loader. How to create the biosboot partition is demonstrated in the below video titled “Partitioning a BIOS Computer”.

LVM

One last thing to consider when manually partitioning your Linux system is whether to use standard partitions or logical volumes. Logical volumes are managed by the Logical Volume Manager (LVM). You can setup LVM volumes directly on your disk without first creating standard partitions to hold them. However, most computers still require that the boot partition be a standard partition and not an LVM volume. Consequently, having LVM volumes only increases the complexity of the system because the LVM volumes must be created within standard partitions.

The main features of LVM — online storage resizing and clustering — are not really applicable to the typical end user. Most laptops do not have hot-swappable drive bays for adding or reconfiguring storage while the system is running. And not many laptop or desktop users have clvmd configured so they can access a centralized storage device concurrently from multiple client computers.

LVM is great for servers and clusters. But it adds extra complexity for the typical end user. Go with standard partitions unless you are a server admin who needs the more advanced features.

Video demonstrations

Now that you know which partitions you need, you can watch the sort video demonstrations below to see how to manually partition a Fedora Linux computer from the Anaconda installer.

These videos demonstrate creating only the minimally required partitions. You can add more if you choose.

Because the GRUB boot loader requires a more complex partition layout on UEFI systems, the below video titled “Partitioning a UEFI Computer” additionally demonstrates how to install the systemd-boot boot loader. By using the systemd-boot boot loader, you can reduce the number of needed partitions to just two — boot and root. How to use a boot loader other than the default (GRUB) with Fedora’s Anaconda installer is officially documented here.

Partitioning a UEFI Computer
Partitioning a BIOS Computer
Posted on Leave a comment

Fedora CoreOS out of preview

The Fedora CoreOS team is pleased to announce that Fedora CoreOS is now available for general use. Here are some more details about this exciting delivery.

Fedora CoreOS is a new Fedora Edition built specifically for running containerized workloads securely and at scale. It’s the successor to both Fedora Atomic Host and CoreOS Container Linux and is part of our effort to explore new ways of assembling and updating an OS. Fedora CoreOS combines the provisioning tools and automatic update model of Container Linux with the packaging technology, OCI support, and SELinux security of Atomic Host.  For more on the Fedora CoreOS philosophy, goals, and design, see the announcement of the preview release.

Some highlights of the current Fedora CoreOS release:

  • Automatic updates, with staged deployments and phased rollouts
  • Built from Fedora 31, featuring:
    • Linux 5.4
    • systemd 243
    • Ignition 2.1
  • OCI and Docker Container support via Podman 1.7 and Moby 18.09
  • cgroups v1 enabled by default for broader compatibility; cgroups v2 available via configuration

Fedora CoreOS is available on a variety of platforms:

  • Bare metal, QEMU, OpenStack, and VMware
  • Images available in all public AWS regions
  • Downloadable cloud images for Alibaba, AWS, Azure, and GCP
  • Can run live from RAM via ISO and PXE (netboot) images

Fedora CoreOS is under active development.  Planned future enhancements include:

  • Addition of the next release stream for extended testing of upcoming Fedora releases.
  • Support for additional cloud and virtualization platforms, and processor architectures other than x86_64.
  • Closer integration with Kubernetes distributions, including OKD.
  • Aggregate statistics collection.
  • Additional documentation.

Where do I get it?

To try out the new release, head over to the download page to get OS images or cloud image IDs.  Then use the quick start guide to get a machine running quickly.

How do I get involved?

It’s easy!  You can report bugs and missing features to the issue tracker. You can also discuss Fedora CoreOS in Fedora Discourse, the development mailing list, in #fedora-coreos on Freenode, or at our weekly IRC meetings.

Are there stability guarantees?

In general, the Fedora Project does not make any guarantees around stability.  While Fedora CoreOS strives for a high level of stability, this can be challenging to achieve in the rapidly evolving Linux and container ecosystems.  We’ve found that the incremental, exploratory, forward-looking development required for Fedora CoreOS — which is also a cornerstone of the Fedora Project as a whole — is difficult to reconcile with the iron-clad stability guarantee that ideally exists when automatically updating systems.

We’ll continue to do our best not to break existing systems over time, and to give users the tools to manage the impact of any regressions.  Nevertheless, automatic updates may produce regressions or breaking changes for some use cases. You should make your own decisions about where and how to run Fedora CoreOS based on your risk tolerance, operational needs, and experience with the OS.  We will continue to announce any major planned or unplanned breakage to the coreos-status mailing list, along with recommended mitigations.

How do I migrate from CoreOS Container Linux?

Container Linux machines cannot be migrated in place to Fedora CoreOS.  We recommend writing a new Fedora CoreOS Config to provision Fedora CoreOS machines.  Fedora CoreOS Configs are similar to Container Linux Configs, and must be passed through the Fedora CoreOS Config Transpiler to produce an Ignition config for provisioning a Fedora CoreOS machine.

Whether you’re currently provisioning your Container Linux machines using a Container Linux Config, handwritten Ignition config, or cloud-config, you’ll need to adjust your configs for differences between Container Linux and Fedora CoreOS.  For example, on Fedora CoreOS network configuration is performed with NetworkManager key files instead of systemd-networkd, and time synchronization is performed by chrony rather than systemd-timesyncd.  Initial migration documentation will be available soon and a skeleton list of differences between the two OSes is available in this issue.

CoreOS Container Linux will be maintained for a few more months, and then will be declared end-of-life.  We’ll announce the exact end-of-life date later this month.

How do I migrate from Fedora Atomic Host?

Fedora Atomic Host has already reached end-of-life, and you should migrate to Fedora CoreOS as soon as possible.  We do not recommend in-place migration of Atomic Host machines to Fedora CoreOS. Instead, we recommend writing a Fedora CoreOS Config and using it to provision new Fedora CoreOS machines.  As with CoreOS Container Linux, you’ll need to adjust your existing cloud-configs for differences between Fedora Atomic Host and Fedora CoreOS.

Welcome to Fedora CoreOS.  Deploy it, launch your apps, and let us know what you think!

Posted on Leave a comment

Develop GUI apps using Flutter on Fedora

When it comes to app development frameworks, Flutter is the latest and greatest. Google seems to be planning to take over the entire GUI app development world with Flutter, starting with mobile devices, which are already perfectly supported. Flutter allows you to develop cross-platform GUI apps for multiple targets — mobile, web, and desktop — from a single codebase.

This post will go through how to install the Flutter SDK and tools on Fedora, as well as how to use them both for mobile development and web/desktop development.

Installing Flutter and Android SDKs on Fedora

To get started building apps with Flutter, you need to install

  • the Android SDK;
  • the Flutter SDK itself; and,
  • optionally, an IDE and its Flutter plugins.

Installing the Android SDK

Flutter requires the installation of the Android SDK with the entire Android Studio suite of tools. Google provides a tar.gz archive. The Android Studio executable can be found in the android-studio/bin directory and is called studio.sh. To run it, open a terminal, cd into the aforementioned directory, and then run:

$ ./studio.sh

Installing the Flutter SDK

Before you install Flutter you may want to consider what release channel you want to be on.

The stable channel is least likely to give you a headache if you just want to build a mobile app using mainstream Flutter features.

On the other hand, you may want to use the latest features, especially for desktop and web app development. In that case, you might be better off installing either the latest version of the beta or even the dev channel.

Either way, you can switch between channels after you install using the flutter channel command explained later in the article.

Head over to the official SDK archive page and download the latest installation bundle for the release channel most appropriate for your use case.

The installation bundle is simply a xz-compressed tarball (.tar.xz extension). You can extract it wherever you want, given that you add the flutter/bin subdirectory to the PATH environment variable.

Installing the IDE plugins

To install the plugin for Visual Studio Code, you need to search for Flutter in the Extensions tab. Installing it will also install the Dart plugin.

The same will happen when you install the plugin for Android Studio by opening the Settings, then the Plugins tab and installing the Flutter plugin.

Using the Flutter and Android CLI Tools on Fedora

Now that you’ve installed Flutter, here’s how to use the CLI tool.

Upgrading and Maintaining Your Flutter Installations

The flutter doctor command is used to check whether your installation and related tools are complete and don’t require any further action.

For example, the output you may get from flutter doctor right after installing on Fedora is:

Doctor summary (to see all details, run flutter doctor -v): [✓] Flutter (Channel stable, v1.12.13+hotfix.5, on Linux, locale it_IT.UTF-8) [!] Android toolchain - develop for Android devices (Android SDK version 29.0.2) ✗ Android licenses not accepted. To resolve this, run: flutter doctor --android-licenses [!] Android Studio (version 3.5) ✗ Flutter plugin not installed; this adds Flutter specific functionality. ✗ Dart plugin not installed; this adds Dart specific functionality. [!] Connected device ! No devices available ! Doctor found issues in 3 categories.

Of course the issue with the Android toolchain has to be resolved in order to build for Android. Run this command to accept the licenses:

$ flutter doctor --android-licenses

Use the flutter channel command to switch channels after installation. It’s just like switching branches on Git (and that’s actually what it does). You use it in the following way:

$ flutter channel <channel_name>

…where you’d replace <channel_name> with the release channel you want to switch to.

After doing that, or whenever you feel the need to do it, you need to update your installation. You might consider running this every once in a while or when a major update comes out if you follow Flutter news. Run this command:

$ flutter upgrade

Building for Mobile

You can build for Android very easily: the flutter build command supports it by default, and it allows you to build both APKs and newfangled app bundles.

All you need to do is to create a project with flutter create, which will generate some code for an example app and the necessary android and ios folders.

When you’re done coding you can either run:

  • flutter build apk or flutter build appbundle to generate the necessary app files to distribute, or
  • flutter run to run the app on a connected device or emulator directly.

When you run the app on a phone or emulator with flutter run, you can use the R button on the keyboard to use stateful hot reload. This feature updates what’s displayed on the phone or emulator to reflect the changes you’ve made to the code without requiring a full rebuild.

If you input a capital R character to the debug console, you trigger a hot restart. This restart doesn’t preserve state and is necessary for bigger changes to the app.

If you’re using a GUI IDE, you can trigger a hot reload using the bolt icon button and a hot restart with the typical refresh button.

Building for the Desktop

To build apps for the desktop on Fedora, use the flutter-desktop-embedding repository. The flutter create command doesn’t have templates for desktop Linux apps yet. That repository contains examples of desktop apps and files required to build on desktop, as well as examples of plugins for desktop apps.

To build or run apps for Linux, you also need to be on the master release channel and enable Linux desktop app development. To do this, run:

$ flutter config --enable-linux-desktop

After that, you can use flutter run to run the app on your development workstation directly, or run flutter build linux to build a binary file in the build/ directory.

If those commands don’t work, run this command in the project directory to generate the required files to build in the linux/ directory:

$ flutter create .

Building for the Web

Starting with Flutter 1.12, you can build Web apps using Flutter with the mainline codebase, without having to use the flutter_web forked libraries, but you have to be running on the beta channel.

If you are (you can switch to it using flutter channel beta and flutter upgrade as we’ve seen earlier), you need to enable web development by running flutter config –enable-web.

After doing that, you can run flutter run -d web and a local web server will be started from which you can access your app. The command returns the URL at which the server is listening, including the port number.

You can also run flutter build web to build the static website files in the build/ directory.

If those commands don’t work, run this command in the project directory to generate the required files to build in the web/ directory:

$ flutter create .

Packages for Installing Flutter

Other distributions have packages or community repositories to install and update in a more straightforward and intuitive way. However, at the time of writing, no such thing exists for Flutter. If you have experience packaging RPMs for Fedora, consider contributing to this GitHub repository for this COPR package.

The next step is learning Flutter. You can do that in a number of ways:

  • Read the good API reference documentation on the official site
  • Watching some of the introductory video courses available online
  • Read one of the many books out there today. [Check out the author’s bio for a suggestion! — Ed.]

Photo by Randall Ruiz on Unsplash.

Posted on Leave a comment

How to setup a DNS server with bind

The Domain Name System, or DNS, as it’s more commonly known, translates or converts domain names into the IP addresses associated with that domain. DNS is the reason you are able to find your favorite website by name instead of typing an IP address into your browser. This guide shows you how to configure a Master DNS system and one client.

Here are system details for the example used in this article:

dns01.fedora.local (192.168.1.160 ) - Master DNS server
client.fedora.local (192.168.1.136 ) - Client 

DNS server configuration

Install the bind packages using sudo:

$ sudo dnf install bind bind-utils -y

The /etc/named.conf configuration file is provided by the bind package to allow you to configure the DNS server.

Edit the /etc/named.conf file:

sudo vi /etc/named.conf

Look for the following line:

listen-on port 53 { 127.0.0.1; };

Add the IP address of your Master DNS server as follows:

listen-on port 53 { 127.0.0.1; 192.168.1.160; };

Look for the next line:

allow-query  { localhost; };

Add your local network range. The example system uses IP addresses in the 192.168.1.X range. This is specified as follows:

allow-query  { localhost; 192.168.1.0/24; };

Specify a forward and reverse zone. Zone files are simply text files that have the DNS information, such as IP addresses and host-names, on your system. The forward zone file makes it possible for the translation of a host-name to its IP address. The reverse zone file does the opposite. It allows a remote system to translate an IP address to the host name.

Look for the following line at the bottom of the /etc/named.conf file:

include "/etc/named.rfc1912.zones";

Here, you’ll specify the zone file information directly above that line as follows:

zone "dns01.fedora.local" IN {
type master;
file "forward.fedora.local";
allow-update { none; };
}; zone "1.168.192.in-addr.arpa" IN {
type master;
file "reverse.fedora.local";
allow-update { none; };
};

The forward.fedora.local and the file reverse.fedora.local are just the names of the zone files you will be creating. They can be called anything you like.

Save and exit.

Create the zone files

Create the forward and reverse zone files you specified in the /etc/named.conf file:

$ sudo vi /var/named/forward.fedora.local

Add the following lines:

$TTL 86400
@   IN  SOA     dns01.fedora.local. root.fedora.local. (
        2011071001  ;Serial
        3600        ;Refresh
        1800        ;Retry
        604800      ;Expire
        86400       ;Minimum TTL
)
@       IN  NS          dns01.fedora.local.
@       IN  A           192.168.1.160
dns01        IN  A   192.168.1.160
client          IN  A   192.168.1.136

Everything in bold is specific to your environment. Save the file and exit. Next, edit the reverse.fedora.local file:

$ sudo vi /var/named/reverse.fedora.local

Add the following lines:

$TTL 86400
@   IN  SOA     dns01.fedora.local. root.fedora.local. (
        2011071001  ;Serial
        3600        ;Refresh
        1800        ;Retry
        604800      ;Expire
        86400       ;Minimum TTL
)
@       IN  NS          dns01.fedora.local.
@       IN  PTR         fedora.local.
dns01       IN  A   192.168.1.160
client          IN  A   192.168.1.136
160     IN  PTR         dns01.fedora.local.
136     IN  PTR         client.fedora.local.

Everything in bold is also specific to your environment. Save the file and exit.

You’ll also need to configure SELinux and add the correct ownership for the configuration files.

sudo chgrp named -R /var/named
sudo chown -v root:named /etc/named.conf
sudo restorecon -rv /var/named
sudo restorecon /etc/named.conf

Configure the firewall:

sudo firewall-cmd --add-service=dns --perm
sudo firewall-cmd --reload

Check the configuration for any syntax errors

sudo named-checkconf /etc/named.conf

Your configuration is valid if no output or errors are returned.

Check the forward and reverse zone files.

$ sudo named-checkzone forward.fedora.local /var/named/forward.fedora.local $ sudo named-checkzone reverse.fedora.local /var/named/reverse.fedora.local

You should see a response of OK:

zone forward.fedora.local/IN: loaded serial 2011071001
OK zone reverse.fedora.local/IN: loaded serial 2011071001
OK

Enable and start the DNS service

$ sudo systemctl enable named
$ sudo systemctl start named

Configuring the resolv.conf file

Edit the /etc/resolv.conf file:

$ sudo vi /etc/resolv.conf

Look for your current name server line or lines. On the example system, a cable modem/router is serving as the name server and so it currently looks like this:

nameserver 192.168.1.1

This needs to be changed to the IP address of the Master DNS server:

nameserver 192.168.1.160

Save your changes and exit.

Unfortunately there is one caveat to be aware of. NetworkManager overwrites the /etc/resolv.conf file if the system is rebooted or networking gets restarted. This means you will lose all of the changes that you made.

To prevent this from happening, make /etc/resolv.conf immutable:

$ sudo chattr +i /etc/resolv.conf 

If you want to set it back and allow it to be overwritten again:

$ sudo chattr -i /etc/resolv.conf

Testing the DNS server

$ dig fedoramagazine.org
; <<>> DiG 9.11.13-RedHat-9.11.13-2.fc30 <<>> fedoramagazine.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8391
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ; COOKIE: c7350d07f8efaa1286c670ab5e13482d600f82274871195a (good) ;; QUESTION SECTION: ;fedoramagazine.org. IN A ;; ANSWER SECTION: fedoramagazine.org. 50 IN A 35.197.52.145 ;; AUTHORITY SECTION: fedoramagazine.org. 86150 IN NS ns05.fedoraproject.org. fedoramagazine.org. 86150 IN NS ns02.fedoraproject.org. fedoramagazine.org. 86150 IN NS ns04.fedoraproject.org. ;; ADDITIONAL SECTION: ns02.fedoraproject.org. 86150 IN A 152.19.134.139 ns04.fedoraproject.org. 86150 IN A 209.132.181.17 ns05.fedoraproject.org. 86150 IN A 85.236.55.10 ns02.fedoraproject.org. 86150 IN AAAA 2610:28:3090:3001:dead:beef:cafe:fed5 ns05.fedoraproject.org. 86150 IN AAAA 2001:4178:2:1269:dead:beef:cafe:fed5 ;; Query time: 830 msec ;; SERVER: 192.168.1.160#53(192.168.1.160) ;; WHEN: Mon Jan 06 08:46:05 CST 2020 ;; MSG SIZE rcvd: 266

There are a few things to look at to verify that the DNS server is working correctly. Obviously getting the results back are important, but that by itself doesn’t mean the DNS server is actually doing the work.

The QUERY, ANSWER, and AUTHORITY fields at the top should show non-zero as it in does in our example:

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6

And the SERVER field should have the IP address of your DNS server:

;; SERVER: 192.168.1.160#53(192.168.1.160)

In case this is the first time you’ve run the dig command, notice how it took 830 milliseconds for the query to complete:

;; Query time: 830 msec

If you run it again, the query will run much quicker:

$ dig fedoramagazine.org 
;; Query time: 0 msec
;; SERVER: 192.168.1.160#53(192.168.1.160)

Client configuration

The client configuration will be a lot simpler.

Install the bind utilities:

$ sudo dnf install bind-utils -y

Edit the /etc/resolv.conf file and configure the Master DNS as the only name server:

$ sudo vi /etc/resolv.conf

This is how it should look:

nameserver 192.168.1.160

Save your changes and exit. Then, make the /etc/resolv.conf file immutable to prevent it from be overwritten and going back to its default settings:

$ sudo chattr +i /etc/resolv.conf

Testing the client

You should get the same results as you did from the DNS server:

$ dig fedoramagazine.org
; <<>> DiG 9.11.13-RedHat-9.11.13-2.fc30 <<>> fedoramagazine.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8391
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ; COOKIE: c7350d07f8efaa1286c670ab5e13482d600f82274871195a (good) ;; QUESTION SECTION: ;fedoramagazine.org. IN A ;; ANSWER SECTION: fedoramagazine.org. 50 IN A 35.197.52.145 ;; AUTHORITY SECTION: fedoramagazine.org. 86150 IN NS ns05.fedoraproject.org. fedoramagazine.org. 86150 IN NS ns02.fedoraproject.org. fedoramagazine.org. 86150 IN NS ns04.fedoraproject.org. ;; ADDITIONAL SECTION: ns02.fedoraproject.org. 86150 IN A 152.19.134.139 ns04.fedoraproject.org. 86150 IN A 209.132.181.17 ns05.fedoraproject.org. 86150 IN A 85.236.55.10 ns02.fedoraproject.org. 86150 IN AAAA 2610:28:3090:3001:dead:beef:cafe:fed5 ns05.fedoraproject.org. 86150 IN AAAA 2001:4178:2:1269:dead:beef:cafe:fed5 ;; Query time: 1 msec ;; SERVER: 192.168.1.160#53(192.168.1.160) ;; WHEN: Mon Jan 06 08:46:05 CST 2020 ;; MSG SIZE rcvd: 266

Make sure the SERVER output has the IP Address of your DNS server.

Your DNS server is now ready to use and all requests from the client should be going through your DNS server now!

Posted on Leave a comment

How to setup multiple monitors in sway

Sway is a tiling Wayland compositor which has mostly the same features, look and workflow as the i3 X11 window manager. Because Sway uses Wayland instead of X11, the tools to setup X11 don’t always work in sway. This includes tools like xrandr, which are used in X11 window managers or desktops to setup monitors. This is why monitors have to be setup by editing the sway config file, and that’s what this article is about.

Getting your monitor ID’s

First, you have to get the names sway uses to refer to your monitors. You can do this by running:

$ swaymsg -t get_outputs

You will get information about all of your monitors, every monitor separated by an empty line.

You have to look for the first line of every section, and for what’s after “Output”. For example, when you see a line like “Output DVI-D-1 ‘Philips Consumer Electronics Company’”, the output ID is “DVI-D-1”. Note these ID’s and which physical monitors they belong to.

Editing the config file

If you haven’t edited the Sway config file before, you have to copy it to your home directory by running this command:

cp -r /etc/sway/config ~/.config/sway/config

Now the default config file is located in ~/.config/sway and called “config”. You can edit it using any text editor.

Now you have to do a little bit of math. Imagine a grid with the origin in the top left corner. The units of the X and Y coordinates are pixels. The Y axis is inverted. This means that if you, for example, start at the origin and you move 100 pixels to the right and 80 pixels down, your coordinates will be (100, 80).

You have to calculate where your displays are going to end up on this grid. The locations of the displays are specified with the top left pixel. For example, if we want to have a monitor with name HDMI1 and a resolution of 1920×1080, and to the right of it a laptop monitor with name eDP1 and a resolution of 1600×900, you have to type this in your config file:

output HDMI1 pos 0 0
output eDP1 pos 1920 0

You can also specify the resolutions manually by using the res option: 

output HDMI1 pos 0 0 res 1920x1080
output eDP1 pos 1920 0 res 1600x900

Binding workspaces to monitors

Using sway with multiple monitors can be a little bit tricky with workspace management. Luckily, you can bind workspaces to a specific monitor, so you can easily switch to that monitor and use your displays more efficiently. This can simply be done by the workspace command in your config file. For example, if you want to bind workspace 1 and 2 to monitor DVI-D-1 and workspace 8 and 9 to monitor HDMI-A-1, you can do that by using:

workspace 1 output DVI-D-1
workspace 2 output DVI-D-1
workspace 8 output HDMI-A-1
workspace 9 output HDMI-A-1

That’s it! These are the basics of multi monitor setup in sway. A more detailed guide can be found at https://github.com/swaywm/sway/wiki#Multihead

Posted on Leave a comment

Most read articles in 2019 not from 2019

Some topics are very popular, no matter when they’re first mentioned. And Fedora Magazine has a few articles that have proven to be popular for a long time.

You’re reading the last article from the “best of 2019” series. But this time, it’s about articles written before 2019, but being very popular in 2019.

All of the articles below have been checked and updated to be correct even now, in early 2020. Let’s dive in!

i3 tiling window manager

Wish to try an alternative desktop? The following article introduces i3 — a tiling window manager that doesn’t require high-end hardware, but is powerful and highly customizable. You’ll learn about the installation process, some initial setup, and a few tricks to get you started.

Powerline

Would you like to have your shell a bit more organized? Then you might want to try Powerline — a utility that gives you status information, and some visual tweaks to your shell to make it more pleasant and organized.

Monospace fonts

Do you spend a lot of your time in terminal or a code editor? And is your font making you happy? Discover some beautiful monospace fonts available in the Fedora repositories.

Image viewers

Is the default image viewer on your desktop not working the way you want? The following article shows 17 image viewers available in Fedora — varying from simpler to ones full of features.

Fedora as a VirtualBox guest

Love Fedora but your machine runs Windows or macOS? One option to get Fedora running on your machine is virtualization. Your system keeps running and you’ll be able to access Fedora at the same time in a virtual machine. The following article introduces VirtualBox that can do just that.

Posted on Leave a comment

Tracking Translations with Transtats

Translation is an important step in software localization which helps make software more popular globally, and impacts international user experience. In recent years, localization processes have been evolving worldwide to become more continuous, faster, efficient with automation. In Fedora, the development of the Zanata platform and its plugins, then Transtats, and now the migration to the Weblate platform are part of this common ongoing goal. The localization of a desktop OS like Fedora is highly complex because it depends on many factors of the individual upstream projects which are packaged in Fedora. For example, different translation timelines, resources, and tooling.

What is Transtats?

Transtats is a web application which tries to tie up upstream repositories, translation platforms, build system, and product release schedule together to solve problems of mismatch, out-of-sync conditions and to assist the timely packaging of quality translations. Actually, it collects translation data, analyzes them, and creates meaningful representations.

Fedora Transtats is hosted at https://transtats.fedoraproject.org/

How to see the translation status of my package?

Just select Packages tab from left hand side navigation bar. This takes us to the packages list view. Then, search for the package and click on its name.

For example anaconda. On package details page, locate following:

Here, we have translation statistics from translation platform: Zanata and Koji build system. Syncs with the platform and build system are scheduled, which update differences periodically. Languages in red color indicate that there are translated strings remaining in the Translation Platform to be pulled and packaged, whereas, blue denote translated messages could not make 100% in the built package.

String breakage (or changes?)

In translation of software packages, one of the challenges is to prevent string breakage. Package maintainers should strive to abide by the scheduled Fedora release String Freeze. However, in some circumstances it could be necessary to break the string freeze and to inform the translation team on the mailing list. As well as, to update latest translation template (POT) file in the translation platform. Just in case these actions seem missing – translators may get new strings to translate very late or the application may have some strings untranslated. In the worst case, an outdated translation string mismatch may result in a crash. Sync and automation pipelines are there to prevent this, nevertheless it depends on the push or pull methods followed by package developers or maintainers.

To deal with the same context, we can use a job template in Transtats to detect this string change – particularly useful after string freeze in Fedora release schedule. This would be really helpful for the folks who look for packaging translations without string breakage, keeping translation template (POT) file in sync with translation platform, and testing localized form of the application for translation completeness to back trace.

How to detect string changes?

One of the options in Jobs tab is ‘YML based Jobs’. Where we can see available job templates.

The jobs framework executes all the tasks mentioned in the YAML, create appropriate logs and store results. Track String Change job basically:

  1. Clones the source repository of respective package.
  2. Tries to generate translation template (POT) file.
  3. Downloads POT file from respective translation platform.
  4. And, finds differences between both the POT files.

Actually, Transtats maintains mapping of upstream repository, Translation Platform project and respective build tag for every package.

Let’s take a closer look into this YAML. We can provide value for %PACKAGE_NAME% and %RELEASE_SLUG% in the next step – Set Values! For example: anaconda and fedora-32. Furthermore, a couple of things seek attention are:

  • In case the upstream software repository maintains separate git branch for fedora release, please edit ‘branch: master’ to ‘branch: <fedora-release-branch>’
  • In ‘generate’ block, mention the command to generate POT file. Default one should work for ‘intltool-update’ only, however, many packages do have their own.
  • A few packages may have gettext domain name different than that of package name. If this is the case, mention the gettext domain too.

As soon as the job is triggered, logs should be populated. If this is not a scratch run, a unique URL shall also be created at the end.

Left hand side is the input YAML and right hand side is respective log for each task. Here we can find the differences and figure out string mismatch.

In Transtats, we can create solutions to different problems in the form of job templates. And, scheduling of these jobs could be a step towards automation.

Posted on Leave a comment

Top articles of 2019: Editors’ choice

The year is still ending and the perfect time to reflect and look back at some Magazine articles continues. This time, let’s see if the editors chose some interesting ones from 2019. Yes, they did!

Red Hat, IBM, and Fedora

IBM acquired Red Hat in July 2019, and this article discusses how nothing changes for the Fedora project.

Some tips for the Workstation users

Using Fedora Workstation? This article gives you some tips including enhancing photos, coding, or getting more wallpapers right from the repositories.

Fedora and CentOS Stream

In this article, the Fedora Project Leader discusses the CentOS Stream announcement from September 2019 — including the relationship of Fedora, Red Hat Enterprise Linux, and CentOS.

Contribute to Fedora Magazine

Fedora Magazine exists thanks to our great contributors. And you (yes, you!) can become one, too! Contributions include topic proposals, writing, and editorial tasks. This article shows you how to join the team and help people learn about Linux.

Posted on Leave a comment

Top articles of 2019: For desktop users

It’s this time of the year again — the time to reflect, and look back at some Fedora Magazine’s most popular articles in 2019. This time it’s all about desktop users. Let’s highlight a few of the many articles written by our great contributors in 2019, focusing on Fedora as a desktop OS.

Dash to Dock extension for Workstation

When you’re serious about your desktop, and perhaps using many applications, you might want to see what’s going on at all times. Or at least the icons. The article below shows you how to have a dock at the bottom of your screen, with all your apps — both running and favourites — visible at all times.

Tweaking the look of Workstation with themes

When you like how your Linux desktop works, but not so much how it looks, there is a solution. The following article shows you how to tweak the look of your windows, icons, the mouse cursor, and the whole environment as well — all that within GNOME, the Workstation’s default environment.

i3 with multiple monitors

One of the great things about Linux desktop is the never ending possibilities of customisation. And that includes window managers, too! The following article shows how to use one of the very popular ones — i3 — with multiple monitors.

IceWM

If you’re looking for speed, simplicity, and getting out of the user’s way, you might like IceWM. The following article introduces this minimal window manager, and helps you install it, too, should you be interested.

Stay tuned for even more upcoming “Best of 2019” articles. All of us at the Magazine hope you have a relaxing holiday season, and wish you a happy new year.