Posted on Leave a comment

Exploring Azure App Service – Azure Diagnostics

If you’ve followed our previous posts about using Azure App Service to host web apps in the cloud (1. Introduction to App Service, 2. Hosting web apps that use SQL) you’re already familiar with how easy it is to get an app running in the cloud; but what if the app doesn’t work correctly (it’s crashing, running too slow, etc.)?  In this post we’ll explore how to use Azure’s Application Insights to have always on diagnostics that will help you find and fix these types of issues.

Azure Application Insights provides seamless integration with Azure App Service for monitoring, triaging and diagnosing code-level issues. It can easily be enabled on an existing web app with a single button click. Profiler traces and exception snapshots will be available for identifying the lines of code that caused issues. Let’s take a closer look at this experience.

Enable Application Insights on an existing web app to investigate issues

We recommend you follow along using your own application, but if you don’t have one readily available we will be using the Contoso University sample. The instructions on how to deploy it to App Service are in the readme file.

If you are following along with Contoso University, you will notice the Instructors page throws errors. In addition, the Courses tab loads a bit slower than others.

Let’s turn on Application Insights to investigate. After the app is deployed to App service, Application Insights can be enabled from the App Service portal by clicking the button on the overview blade:

Fill out the Application Insights enablement blade the following way:

  • Create a new resource, with an appropriate name.
  • Leave all default options for Code-level diagnostics on. The added section Code level diagnostics is on by default to enable Profiler and Snapshot Debugger for diagnosing slow app performance and runtime exceptions.
  • Click the ‘OK’ button. Once prompted if to restart the web app, click ‘Continue’ to proceed.

Once Application Insights is enabled, you will be able to see its connection status. You can now navigate to the Application Insights overview blade by clicking on the link next to the green check mark:

Generate traffic for your web app in order to reproduce issues

Let’s generate some traffic to reproduce our two issues: a) Courses page loading slowly, b) Instructors page throwing errors. You are going to use performance test with Azure portal to make requests to the following URLs:

  • http://<your_webapp_name>.azurewebsites.net/Courses
  • http://<your_webapp_name>.azurewebsites.net/Instructors

You are going to be creating two different performance tests, once for each URL. For the Courses page you are going to simulate 250 users over a duration of 5 minutes, since you are experiencing a performance issue. For the Instructors page you can simulate 10 users over 1 minutes since we’d generally expect less instructors than users on the site at any given time.

Profile your app during performance tests to identify performance issues

A performance test will generate traffic, but if you want to understand how you app performs you have to analyze its performance while the test is running using a profiler. Let’s do exactly that, using the Performance | Configure Profiler blade while one of our performance tests is running:

Later on we will walkthrough how to use the profiler to identify the exact lines of code responsible for the slow-down. For now, let’s focus on simply profiling . After clicking on “Profile now”, wait until the performance test finishes and the profiler has completed its analysis. After a new entry in the section “Recent profiling sessions” appears, navigate back to the Overview blade.

Diagnose runtime exceptions

If your web app has any failed requests, you need to root cause and solve the issues to ensure your app works reliably. After running your performance test on the Instructors page you have some example failed requests to take a look at:

Let’s go to Failures blade to investigate what failed.

On the Failures blade, the top failed operation is ‘GET Instructors/Index’ and the top exception is ‘InvalidOperationException’. Click on the ‘COUNT’ column of the exception count to open list of sample exceptions. Click on the suggested exception to open the End-to-End Transaction blade.

In the End-to-End Transaction blade, you can see ‘System.InvalidOperationException’ exceptions thrown from GET Instructors/Index operation. Select the exception row and click on ‘Open debug snapshot’.

If it’s the first time you use Snapshot Debugger, you will prompt to request RBAC access to snapshots to safeguard the potentially sensitive data shown in local variables:

Once you get access, you will see a snapshot view like the following:

From the local variables and call stack, you can see the exception is thrown at InstructorsController.cs line 56 with message ‘Nullable object must have a value’. This provides sufficient information to proceed with debugging the app’s source code.

To get a better experience, download the snapshot and debug it using Visual Studio Enterprise. You will be able to interactively see which line of code caused the exception:

Looking at the code, the exception was thrown because ‘id’ is null and you are missing the appropriate check. When your app is running in the cloud, resources are dynamically provisioned and destroyed and so may not always get the chance to access the state of a failed component before it is reset. The Snapshot Debugger is a powerful tool that can maintain the failed state of the component even after the component’s state has been reset, by capturing local variables and call stack at the time the exception is thrown.

Diagnose bad performance from your web app

The server response time chart on the overview blade provides quick information on how performant your web app is over time. In the Contoso example, we see some spikes on the chart indicating there is a short period of time where users experienced slow responses for the requests they made.

To investigate further, navigate to the Performance blade in App Insights portal:

Zoom into the time range 6pm-10pm in the ‘Operation times: zoom into range’ chart to see spikes on the Request count.

Sort the Operations table by duration and request count to figure out where your web app spent the most time. In our example GET Courses/Index operation has the longest average duration. Let’s click on it to investigate why this operation takes so long.

The right side of the blade provides insights based on the Course/Index operation.

From the chart you can see although most operations only took around 400ms, the worst ones took up to 35 seconds. This means some users are getting really bad experience when hitting this URL and you should address it. Let’s look at Profiler traces to troubleshoot why GET Courses/Index was being so slow.

You should see profiler traces similar to the following:

The code path that’s taking the most time is prefixed with the flame icon. In this particular request, most time was spent on reading the list of courses from the database. Browsing to the code CourseController.cs we can see that when loading the list of courses the AsNoTracking() optimization option is not used. By default, Entity Framework will turn on tracking which caches the results to compare with what’s modified. This could add an approx. ~30% overhead to your app’s performance. For simple read operation like this one, we can optimize the query performance by using the AsNoTracking() option.

Conclusion

We hope that you find it easy to use Application Insights to diagnose performance and errors in your web apps. We believe Azure App Service is a great place to get started hosting and maintaining your web apps. You don’t have to enable App Insights upfront; the option is always there to be turned on when and as needed without re-deployment.

If you have any questions or issues, let us know by leaving comments below.

Catherine Wang Program Manager, VS and .NET

Catherine is on Azure developer experience team and is responsible for Azure diagnostics, security and storage tools.

Posted on Leave a comment

Changes to script debugging in Visual Studio 15.7

We’re always looking for ways to make developing with Visual Studio faster.  One of the tasks developers do many times a day is launching debugging sessions.  We identified that script debugging added about 1.5s per F5, but only about 15.5% of people actively debugged script using Visual Studio.

Based on the above, in Visual Studio 15.7 we made the decision to turn off script debugging by default to improve the overall experience for most users. If you want to turn the capability back on, you can do it from Tools | Options | Debugging | and check “Enable JavaScript debugging for ASP.NET (Chrome, Edge, and IE):

We also added the following dialog when you attempt to set a breakpoint with script debugging disabled:

When script debugging is ON, Visual Studio automatically stops debugging when the browser window is closed. It will also close the browser window if you stop debugging in Visual Studio. We added the same capability to Visual Studio when script debugging is OFF under Tools | Options | Project and Solutions | Web Projects:

With this option enabled:

  • Visual Studio will open a new browser window when debugging starts
  • Visual Studio will stop debugging when the browser window is closed

The following matrix shows you all the available options and the expected behavior for each combination:

Enable JavaScript debugging for ASP.NET (Chrome, Edge and IE) Stop debugger when browser window is closed What happens when you start debugging What happens when you stop debugging What happens when you close the browser window
TRUE TRUE New browser window always pops up New browser window always goes away, with all open tabs Debugging stops
TRUE FALSE New browser window always pops up New browser window always goes away, with all open tabs Debugging stops
FALSE TRUE New browser window always pops up New browser window always goes away, with all open tabs Debugging stops
FALSE FALSE Opens new tab if browser window already exists Browser tab/window stays open Debugging continues

If you want Visual Studio to return to its default pre-15.7 behavior, all you have to do is enable script debugging in Tools | Options | Debugging | and check “Enable JavaScript debugging for ASP.NET (Chrome, Edge, and IE). If you notice any unexpected behavior with these options please use report a problem in Visual Studio to let us know. If you have any feedback or suggestions regarding this change please let us know on uservoice or simply post a reply to this post.

Posted on Leave a comment

Use Dependency Injection In WebForms Application

Dependency Injection design pattern is widely used in modern applications.  It decouples objects to the extent that no client code needs to be changed simply because an object it depends changes to a different one.  It brings you a lot of benefits, like reduced dependency, more reusable code, more testable code, etc.  in the past, it was very difficult to use Dependency Injection in WebForms application before.  Starting from .NET 4.7.2, it is now easy for developers to use Dependency Injection in WebForms applications.  With the UnityAdapter, you can add it to your existing WebForms application in 4 simple steps.

How to enable Dependency Injection in your existing WebForms application

Suppose you have a movie website which lists most popular movies in history.  You use repository pattern to separate the logic that retrieves the data and maps it to the business entity.  Currently you are creating business logic object and repository object in default.aspx page.  The code looks like bellow.

Now simply follow 4 steps below, you will be able to adopt Dependency Injection to decouple the MovieManager from default.aspx page. The sample web application is on this Github repo.  And you can use tag to retrieve the code change in each step.

1. Retarget the project to .NET Framework 4.7.2. (Git Tag: step-1)

Open project property and change the targetFramework of the project to .NET Framework 4.7.2. You would also need to change targetFramework in httpRuntime section in web.config file as illustrated below.

2. Install AspNet.WebFormsDependencyInjection.Unity NuGet package. (Git Tag: step-2)

3. Register types in Global.asax. (Git Tag: step-3)

4. Refactor Default.aspx.cs. (Git Tag: step-4)

Areas that Dependency Injection can be used

There are many areas you can use Dependency Injection in WebForms applications now. Here is a complete list.

  • Pages and controls
    • WebForms page
    • User control
    • Custom control
  • IHttpHandler and IHttpHandlerFactory
  • IHttpModule
  • Providers
    • BuildProvider
    • ResourceProviderFactory
    • Health monitoring provider
    • Any ProviderBase based provider created by System.Web.Configuration.ProvidersHelper.InstantiateProvider. e.g. custom sessionstate provider

Summary

Using Microsoft.AspNet.WebFormsDependencyInjection.Unity NuGet package on .net framework 4.7.2, Dependency Injection can be easily added into your existing WebForms application. Please give it a try and let us know your feedback.

Posted on Leave a comment

Announcing ASP.NET Providers Connected Service Visual Studio Extension

Provider pattern was introduced in ASP.NET 2.0 and it gives the developers the flexibility of where to store the state of ASP.NET features (e.g. Session State, Membership, Output Cache etc.). In ASP.NET 4.6.2, we added async support for Session State Provider and Output Cache Provider.  These providers provide much better scalability, and enables the web application to adapt to the cloud environment.  Furthermore, , we also released SqlSessionStateProviderAsync, CosmosDBSessionStateProviderAsync, RedisSessionStateProvider and SQLAsyncOutputCacheProvider.  Through these providers the web applications can store the Session State in Azure resources like, SQL Azure, CosmosDB, and Redis Cache, and Output Cache in SQL Azure.  With these options, it may be not very straightforward to pick one and configure it right in the application.  Today we are releasing ASP.NET Providers Connected Service Visual Studio Extension to help you pick the right provider and configure it properly to work with Azure resources.  This extension will be your one-stop shop where you can install and configure all the ASP.NET providers that are Azure ready.

How to install the extension

The ASP.NET Providers Connected Service Extension can be installed on Visual Studio 2017. You can install it through Extensions and Updates in Visual Studio and type “ASP.NET Providers Connected Service” in the search box. Or you can download the extension from Visual Studio MarketPlace.

How to use the extension

To use the Extension, you need to make sure that your web application targets to .NET Framework 4.6.2 or higher.  You can open the extension through right clicking on the project, selecting Add and clicking on Connected Service. You will see all the Connected Services installed on your VS which apply to your project.

After clicking on Microsoft ASP.NET Providers extension. You will see the following wizard window, you can choose the provider you want to install and configure for your ASP.NET web application. Currently we have two sets of providers, Session State providers and Output Cache provider.

Select a provider and click on the Next button. You will see a list of providers that apply to your application, which connects with Azure resources. Currently we have SQL SessionState provider, CosmosDB SessionState provider, RedisCache Sessionstate provider and SQL OutputCache provider.

After the provider is chosen, the wizard window will lead you to select an Azure instance which will be used by the provider selected.  In order to fetch the Azure instances that apply to the selected provider, you will need to sign in with your account in Visual Studio.   Then Select an Azure instance and click on the Finish button, the extension will install the relevant Nuget packages and update the web.config file to connect the provider with that selected Azure instance.

Things to be aware of

  1. If the application is already configured with a provider and you want to install a same type of provider, you need to remove that provider first. E.g. your application is using SQL SessionState provider and you want to switch to CosmosDB SessionState provider. In this case, you need to remove the SessionState Provider settings in the web.config, then you can use ASP.NET Providers Connected Services to install and configure the CosmosDB SessionState provider.
  2. If you are installing Async SQL SessionState provider or Async SQL OutputCache provider, you need to replace the user name and password in the connection string in web.config added by ASP.NET Providers Connected Services. As you may have multiple accounts in your Azure SQL Database instance.

Summary

ASP.NET Providers Connected Services helps you install and configure ASP.NET providers for your web application to consume Azure services. Our goal of this Visual Studio extension is to make it easier and provide a central place to help you configure different providers for the ASP.NET web applications and connect your web applications with Azure. Please install the extension from Visual Studio Marketplace today and let us know your feedback.

Posted on Leave a comment

A Penny Saved is a Ton of Serverless Compute Earned

Scott Guthrie recently shared one of my favorite anecdotes on his Azure Red Shirt Tour. A Microsoft customer regularly invokes 1 billion (yes, that’s with a “B”) Azure Functions per day. The customer reached out to support after the first month thinking there was a bug in the billing system, only to find out that the $72 was in fact correct. How is that possible? Azure Functions is a serverless compute platform that allows you to focus on code that only executes when triggered by events, and you only pay for CPU time and memory used during execution (versus a traditional web server where you are paying a fee even if your app is idle). This is called micro-billing, and is one key reason serverless computing is so powerful.

Curious about Azure Functions? Follow the link https://aka.ms/go-funcs to get up and running with your first function in minutes.

Scott Guthrie Red Shirt

Scott Guthrie on the Azure Red Shirt Tour

In fact, micro-billing is so important, it’s one of three rules I use to verify if a service is serverless. There is not an official set of rules and there is no standard for serverless. The closest thing to a standard is the whitepaper published by the Cloud Native Computing Foundation titled CNCF WG-Serverless Whitepaper v1.0 (PDF). The paper describes serverless computing as “building and running applications that do not require server management.” The paper continues to state they are “executed, scaled, and billed in response to the exact demand needed at the moment.”

It’s easy to label almost everything serverless, but there is a difference between managed and serverless. A managed service takes care of responsibilities for you, such as standing up a website or hosting a Docker container. Serverless is a managed service but requires a bit more. Here is Jeremy’s Serverless Rules.

  1. The service should be capable of running entirely in the cloud. Running locally is fine and often preferred for developing, testing, and debugging, but ultimately it should end up in the cloud.
  2. You don’t have to configure a virtual machine or cluster. Docker is great, but containers require a Docker host to run. That host typically means setting up a VM and, for resiliency and scale, using an orchestrator like Kubernetes to scale the solution. There are also services like Azure Web Apps that provide a fully managed experience for running web apps and containers, but I don’t consider them serverless because they break the next rule.
  3. You only pay for active invocations and never for idle time. This rule is important, and the essence of micro-billing. ACI is a great way to run a container, but I pay for it even when it’s not being used. A function, on the other hand, only bills when it’s called.

These rules are why I stopped calling managed databases “serverless.” So, what, then, does qualify as serverless?

The Azure serverless platform includes Azure Functions, Logic Apps, and Event Grid. In this post, we’ll take a closer look at Azure Functions.

Azure Functions

Azure Functions allows you to write code that is executed based on an event, or trigger. Triggers may include an HTTP request, a timer, a message in a queue, or any other number of important events. The code is passed details of the trigger but can also access bindings that make it easier to connect to resources like databases and storage. The serverless Azure Functions model is based on two parameters: invocations and gigabyte seconds.

Invocations are the number of times the function is invoked based on its trigger. Gigabyte seconds is a function of memory usage. Image a graph that shows time on the x-axis and memory consumption on the y-axis. Plot the memory usage of your function over time. Gigabyte seconds represent the area under the curve.

Let’s assume you have a microservice that is called every minute and takes one second to scan and aggregate data. It uses a steady 128 megabytes of memory during the run. Using the Azure Pricing Calculator, you’ll find that the cost is free. That’s because the first 400,000 Gigabyte seconds and 1 million invocations are free every month. Running every second (there are 2,628,000 seconds in a month) with double memory (256 megabytes), the entire monthly cost is estimated at $4.51.

Azure Functions pricing

Pricing calculator for Azure Functions

Recently I tweeted about my own experience with serverless cost (or lack thereof). I wrote a link-shortening tool. It uses a function to take long URLs and turn them into a shorter code I can easily share. I also have a function that takes the short code and performs the redirect, then stores the data in a queue. Another microservice processes items in the queue and stores metadata that I can analyze for later. I have tens of thousands of invocations per month and my total cost is less than a dollar.

Link shortener stats

A tweet about cost of running serverless code in Azure

Do I have your attention?

In future posts I will explore the cost model for Logic Apps and Event Grid. In the meantime…

Learn about and get started with your first Azure Function by following this link: https://aka.ms/go-funcs

Posted on Leave a comment

Exploring Azure App Service – Web Apps and SQL Azure

There is a good chance that your web app uses a database. In my previous post introducing Azure App Service, I showed some of the benefits of hosting apps in Azure App Service, and how easy it is to get a basic site running in a few clicks. In this post I’ll show how to set up a SQL Azure database along with an App Service Web App from Visual Studio, and apply Entity Framework automatically as part of publish.

Let’s get going

To get started, you’ll first need:

  • Visual Studio 2017 with the ASP.NET and web development workload installed (download now)
  • An Azure account:
  • Any ASP.NET or ASP.NET Core app that uses a SQL Database. For the purposes of this post, I’ll create a new ASP.NET Core app with Individual Authentication:
    • On the “New ASP.NET Core Web Application” dialog, click the “Change Authentication” button.
      clip_image002
  • Then select the “Individual User Accounts” radio button and click “OK”.
  • Click OK.

I can now run my project locally (F5) and create user accounts which will be stored in a SQL Server Express Local DB on my machine.

Publishing to App Service with a Database

Let’s publish our application to Azure. To do this, I’ll right click my project in Solution Explorer and choose “Publish”

clip_image003

This brings up the Visual Studio publish target dialog, which will default to the Azure App Service pane with the “Create new” radio button selected. To continue click “Publish”.

This brings up the “Create App Service” dialog (see the “Key App Service Concepts” section of my previous post for an explanation of the fields). To create a SQL Database for our app to use, click the “Create a SQL Database” link in the top right section of the dialog.

clip_image005

This will bring up the “Configure SQL Database” dialog.

  • Note: If you are using a Visual Studio Enterprise subscription, many regions will not let you create a SQL Azure database so I recommend choosing “East US” or “West US 2” depending on where you are located (we are adding logic in in the Visual Studio 2017 15.8 update to remove those regions if that’s the case, but for now you’ll need to choose an appropriate region). To do this, click the “New…” button next to your “Hosting Plan Dropdown” and pick the appropriate region (“East US” or “West US 2”).
  • Since I don’t have an existing SQL Server, the first thing I need to do is create a server to host the database, so I’ll click the “New…” button next to the “SQL Server” dropdown,
  • Choose a location for the database.
  • Provide an administrator user name and password for the server
  • Click “OK”
    clip_image007
  • Make sure the connection string name field matches the name of the connection string your application uses to access the database (if using a new project, it is “DefaultConnection” which will be prepopulated for you).
    clip_image009
  • Click OK
  • Then click the “Create” button on the “Create App Service” dialog

It should take ~2-3 minutes to create all of the resources in Azure, then your application will publish and a browser will open to your home page.

Configuring EF Migrations

At this point there is a database for your app to use in the cloud, but EF migrations have not been applied, so any functionality that relies on the database (e.g. Registering for a user account) will result in an error.

To apply EF migrations to the database:

  • Click the “Configure…” button on the publish summary page
    clip_image011
  • Navigate to the “Settings” tab
  • When it finishes discovering data contexts, expand the “Entity Framework Migrations” section, and check the “Apply this migration on publish” for all of the contexts it finds
    clip_image013
  • Click “Save”
  • Click Publish again, in the output window you should see “Generating Entity framework SQL Scripts” and then “Generating Entity framework SQL Scripts completed successfully”
    clip_image015

That’s it, your web app and SQL Azure database are both configured and running in the cloud.

Conclusion

Hopefully, this post showed you how easy it is to try App Service and SQL Azure. We believe that for most people, App Service is the easiest place to get started with cloud development, even if you need to move to other services in the future for further capabilities (compare hosting options). As always, let us know if you run into any issues, or have any questions below or via Twitter.