Posted on Leave a comment

Using Fedora to implement REST API in JavaScript: part 2

In part 1 previously, you saw how to quickly create a simple API service using Fedora Workstation, Express, and JavaScript. This article shows you the simplicity of how to create a new API. This part shows you how to:

  • Install a DB server
  • Build a new route
  • Connect a new datasource
  • Use Fedora terminal to send and receive data

Generating an app

Please refer to the previous article for more details. But to make things simple, change to your work directory and generate an app skeleton.

 
$ cd our-work-directory
$ npx express-generator –no-view –git /myApp
$ cd myApp
$ npm i

Installing a database server

In this part, we’ll install MariaDB database. MariaDB is the Fedora default database.

$ dnf module list mariadb | sort -u ## lists the streams available
$ sudo dnf module install mariadb:10.3 ##10.4 is the latest

Note: the default profile is mariadb/server.

For those who need to spin up a Docker container a ready made container with Fedora 31 is available.

$ docker pull registry.fedoraproject.org/f31/mariadb
$ docker run -d --name mariadb_database -e MYSQL_USER=user -e MYSQL_PASSWORD=pass -e MYSQL_DATABASE=db -p 3306:3306 registry.fedoraproject.org/f31/mariadb

Now start the MariaDB service.

$ sudo systemctl start mariadb

If you’d like the service to start at boot, you can also enable it in systemd:

$ sudo systemctl enable mariadb ## start at boot

Next, setup the database as needed:

$ mysql -u root -p ## root password is blank
MariaDB> CREATE DATABASE users;
MariaDB> create user dbuser identified by ‘123456‘;
MariaDB> grant select, insert, update, create, drop on users.* to dbuser;
MariaDB> show grants for dbuser;
MariaDB> \q

A database connector is needed to use the database with Node.js.

$ npm install mariadb ## installs MariaDB Node.js connector

We’ll leverage Sequelize in this sample API. Sequelize is a promise-based Node.js ORM (Object Relational Mapper) for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

$ npm install sequelize ## installs Sequelize

Connecting a new datasource

Now, create a new db folder and create a new file sequelize.js there:

const Sequelize = require('sequelize'), sequelize = new Sequelize(process.env.db_name || 'users', process.env.db_user || 'dbuser', process.env.db_pass || '123456', { host: 'localhost', dialect: 'mariadb', ssl: true
}) module.exports = sequelize

Note: For the sake of completeness I‘m including a link to the related Github repo: https://github.com/vaclav18/express-api-mariadb

Let‘s create a new file models/user.js. A nice feature of a Sequelize model is that it helps us to create the necessary tables and colums automatically. The code snippet responsible for doing this is seen below:

sequelize.sync({
force: false
})

Note: never switch to true with a production database – it would drop your tables at app start!

We will refer to the earlier created sequelize.js this way:

const sequelize = require('../db/sequelize')

Building new routes

Next, you’ll create a new file routes/user.js. You already have routes/users.js from the previous article. You can copy and paste the code in and proceed with editing it.

You’ll also need a reference to the previously created model.

const User = require('../models/user')

Change the route path to /users and also create a new post method route.

Mind the async – await keywords there. An interaction with a database will take some time and this one will do the trick. Yes, an async function returns a promise and this one makes promises easy to use.

Note: This code is not production ready, since it would also need to include an authentication feature.

We‘ll make the new route working this way:

const userRouter = require('./routes/user')
app.use(userRouter)

Let‘s also remove the existing usersRouter. The routes/users.js can be deleted too.

$ npm start

With the above command, you can launch your new app.

Using the terminal to send and retrieve data

Let’s create a new database record through the post method:

$ curl -d 'name=Adam' http://localhost:3000/users

To retrieve the data created through the API, do an HTTP GET request:

$ curl http://localhost:3000/users

The console output of the curl command is a JSON array containing data of all the records in the Users table.

Note: This is not really the usual end result — an application consumes the API finally. The API will usually also have endpoints to update and remove data.

More automation

Let‘s assume we might want to create an API serving many tables. It‘s possible and very handy to automatically generate models for Sequelize from our database. Sequelize-auto will do the heavy lifting for us. The resulting files (models.js) would be placed and imported within the /models directory.

$ npm install sequelize-auto

A node.js connector is needed to use this one and we have it already installed for MariaDB.

Conclusion

It‘s possible to develop and run an API using Fedora, Fedora default MariaDB, JavaScript and efficiently develop a solution like with a noSQL database. For those used to working with MongoDB or a similar noSQL database, Fedora and MariaDB are important open-source enablers.


Photo by Mazhar Zandsalimi on Unsplash.

Posted on Leave a comment

Using Fedora to quickly implement REST API with JavaScript

Fedora Workstation uses GNOME Shell by default and this one was mainly written in JavaScript. JavaScript is famous as a language of front-end development but this time we’ll show its usage for back-end.

We’ll implement a new API using the following technologies: JavaScript, Express and Fedora Workstation. A web browser is being used to call the service (eg. Firefox from the default Fedora WS distro).

Installing of necessary packages

Check: What’s already installed?

$ npm -v
$ node -v

You may already have both the necessary packages installed and can skip the next step. If not, install nodejs:

$ sudo dnf install nodejs

A new simple service (low-code style)

Let‘s navigate to our working directory (work) and create a new directory for our new sample back-end app.

$ cd work
$ mkdir newApp
$ cd newApp
$ npx express-generator

The above command generates an application skeleton for us.

$ npm i

The above command installs dependencies. Please mind the security warnings – never use this one for production.

Crack open the routes/users.js

Modify line #6 to:

res.send(data);

Insert this code block below var router:

let data = { '1':'Ann', '2': 'Bruno', '3': 'Celine' }

Save
the modified file.

We modified a route and added a new variable data. This one could be declared as a const as we didn‘t modify it anywhere. The result:

Running the service on your local Fedora workstation machine

$ npm start

Note: The application entry point is bin/www. You may want to change the port number there.

Calling our new service

Let‘s launch our Firefox browser and type-in:

http://localhost:3000/users

Output

It‘s also possible to leverage the Developer tools. Hit F12 and in the Network tab, select the related GET request and look at the side bar response tab to check the data.

Conclusion

Now we have got a service and and an unnecessary index accessible through localhost:3000. To get quickly rid of this:

  1. Remove the views directory
  2. Remove the public directory
  3. Remove the routes/index.js file
  4. Inside the app.js file, modify the line 37 to:
    res.status(err.status || 500).end();
  5. Remove the next line res.render(‘error’)

Then restart the service:

$ npm start