Posted on Leave a comment

How Microsoft does DevOps – from the 1990s to now

Abel

Abel

So, just how does Microsoft do DevOps? I get asked this all the time. The answer is a little bit complex because to really understand how Microsoft does DevOps, you need to understand where Microsoft was in the late 90’s and early 2000’s. And just what kind of changes we had to go through to truly embrace a DevOps world.

Microsoft’s Enterprise DevOps Transformation Story

Check out this talk where I walk you through Microsoft Enterprise DevOps Transformation Story.

Ok, That’s a Cool Start, But I Want More Details

That was a pretty cool story right? I touched on a lot of DevOps topics in this story but I’m sure some of you want more details!

Image bae19c58437616eccb8d4c0eb073e96e4b48810f6887f1e2c4dc7c2fc590c266

Don’t worry, we got you.

and so much more goodness. Check out everything at DevOps At Microsoft

Posted on Leave a comment

Getting started with Fedora CoreOS

This has been called the age of DevOps, and operating systems seem to be getting a little bit less attention than tools are. However, this doesn’t mean that there has been no innovation in operating systems. [Edit: The diversity of offerings from the plethora of distributions based on the Linux kernel is a fine example of this.] Fedora CoreOS has a specific philosophy of what an operating system should be in this age of DevOps.

Fedora CoreOS’ philosophy

Fedora CoreOS (FCOS) came from the merging of CoreOS Container Linux and Fedora Atomic Host. It is a minimal and monolithic OS focused on running containerized applications. Security being a first class citizen, FCOS provides automatic updates and comes with SELinux hardening.

For automatic updates to work well they need to be very robust. The goal being that servers running FCOS won’t break after an update. This is achieved by using different release streams (stable, testing and next). Each stream is released every 2 weeks and content is promoted from one stream to the other (next -> testing -> stable). That way updates landing in the stable stream have had the opportunity to be tested over a long period of time.

Getting Started

For this example let’s use the stable stream and a QEMU base image that we can run as a virtual machine. You can use coreos-installer to download that image.

From your (Workstation) terminal, run the following commands after updating the link to the image. [Edit: On Silverblue the container based coreos tools are the simplest method to try. Instructions can be found at https://docs.fedoraproject.org/en-US/fedora-coreos/tutorial-setup/ , in particular “Setup with Podman or Docker”.]

$ sudo dnf install coreos-installer
$ coreos-installer download --image-url https://builds.coreos.fedoraproject.org/prod/streams/stable/builds/32.20200907.3.0/x86_64/fedora-coreos-32.20200907.3.0-qemu.x86_64.qcow2.xz
$ xz -d fedora-coreos-32.20200907.3.0-qemu.x86_64.qcow2.xz
$ ls
fedora-coreos-32.20200907.3.0-qemu.x86_64.qcow2

Create a configuration

To customize a FCOS system, you need to provide a configuration file that will be used by Ignition to provision the system. You may use this file to configure things like creating a user, adding a trusted SSH key, enabling systemd services, and more.

The following configuration creates a ‘core’ user and adds an SSH key to the authorized_keys file. It is also creating a systemd service that uses podman to run a simple hello world container.

version: "1.0.0"
variant: fcos
passwd: users: - name: core ssh_authorized_keys: - ssh-ed25519 my_public_ssh_key_hash fcos_key
systemd: units: - contents: | [Unit] Description=Run a hello world web service After=network-online.target Wants=network-online.target [Service] ExecStart=/bin/podman run --pull=always --name=hello --net=host -p 8080:8080 quay.io/cverna/hello ExecStop=/bin/podman rm -f hello [Install] WantedBy=multi-user.target enabled: true name: hello.service

After adding your SSH key in the configuration save it as config.yaml. Next use the Fedora CoreOS Config Transpiler (fcct) tool to convert this YAML configuration into a valid Ignition configuration (JSON format).

Install fcct directly from Fedora’s repositories or get the binary from GitHub.

$ sudo dnf install fcct
$ fcct -output config.ign config.yaml

Install and run Fedora CoreOS

To run the image, you can use the libvirt stack. To install it on a Fedora system using the dnf package manager

$ sudo dnf install @virtualization

Now let’s create and run a Fedora CoreOS virtual machine

$ chcon --verbose unconfined_u:object_r:svirt_home_t:s0 config.ign
$ virt-install --name=fcos \
--vcpus=2 \
--ram=2048 \
--import \
--network=bridge=virbr0 \
--graphics=none \
--qemu-commandline="-fw_cfg name=opt/com.coreos/config,file=${PWD}/config.ign" \
--disk=size=20,backing_store=${PWD}/fedora-coreos-32.20200907.3.0-qemu.x86_64.qcow2

Once the installation is successful, some information is displayed and a login prompt is provided.

Fedora CoreOS 32.20200907.3.0
Kernel 5.8.10-200.fc32.x86_64 on an x86_64 (ttyS0)
SSH host key: SHA256:BJYN7AQZrwKZ7ZF8fWSI9YRhI++KMyeJeDVOE6rQ27U (ED25519)
SSH host key: SHA256:W3wfZp7EGkLuM3z4cy1ZJSMFLntYyW1kqAqKkxyuZrE (ECDSA)
SSH host key: SHA256:gb7/4Qo5aYhEjgoDZbrm8t1D0msgGYsQ0xhW5BAuZz0 (RSA)
ens2: 192.168.122.237 fe80::5054:ff:fef7:1a73
Ignition: user provided config was applied
Ignition: wrote ssh authorized keys file for user: core

The Ignition configuration file did not provide any password for the core user, therefore it is not possible to login directly via the console. (Though, it is possible to configure a password for users via Ignition configuration.)

Use Ctrl + ] key combination to exit the virtual machine’s console. Then check if the hello.service is running.

$ curl http://192.168.122.237:8080
Hello from Fedora CoreOS!

Using the preconfigured SSH key, you can also access the VM and inspect the services running on it.

$ ssh [email protected]
$ systemctl status hello
● hello.service - Run a hello world web service
Loaded: loaded (/etc/systemd/system/hello.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2020-10-28 10:10:26 UTC; 42s ago

zincati, rpm-ostree and automatic updates

The zincati service drives rpm-ostreed with automatic updates.
Check which version of Fedora CoreOS is currently running on the VM, and check if Zincati has found an update.

$ ssh [email protected]
$ rpm-ostree status
State: idle
Deployments:
● ostree://fedora:fedora/x86_64/coreos/stable
Version: 32.20200907.3.0 (2020-09-23T08:16:31Z)
Commit: b53de8b03134c5e6b683b5ea471888e9e1b193781794f01b9ed5865b57f35d57
GPGSignature: Valid signature by 97A1AE57C3A2372CCA3A4ABA6C13026D12C944D0
$ systemctl status zincati
● zincati.service - Zincati Update Agent
Loaded: loaded (/usr/lib/systemd/system/zincati.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2020-10-28 13:36:23 UTC; 7s ago
…
Oct 28 13:36:24 cosa-devsh zincati[1013]: [INFO ] initialization complete, auto-updates logic enabled
Oct 28 13:36:25 cosa-devsh zincati[1013]: [INFO ] target release '32.20201004.3.0' selected, proceeding to stage it ... zincati reboot ...

After the restart, let’s remote login once more to check the new version of Fedora CoreOS.

$ ssh [email protected]
$ rpm-ostree status
State: idle
Deployments:
● ostree://fedora:fedora/x86_64/coreos/stable
Version: 32.20201004.3.0 (2020-10-19T17:12:33Z)
Commit: 64bb377ae7e6949c26cfe819f3f0bd517596d461e437f2f6e9f1f3c24376fd30
GPGSignature: Valid signature by 97A1AE57C3A2372CCA3A4ABA6C13026D12C944D0
ostree://fedora:fedora/x86_64/coreos/stable
Version: 32.20200907.3.0 (2020-09-23T08:16:31Z)
Commit: b53de8b03134c5e6b683b5ea471888e9e1b193781794f01b9ed5865b57f35d57
GPGSignature: Valid signature by 97A1AE57C3A2372CCA3A4ABA6C13026D12C944D0

rpm-ostree status now shows 2 versions of Fedora CoreOS, the one that came in the QEMU image, and the latest one received from the update. By having these 2 versions available, it is possible to rollback to the previous version using the rpm-ostree rollback command.

Finally, you can make sure that the hello service is still running and serving content.

$ curl http://192.168.122.237:8080
Hello from Fedora CoreOS!

More information: Fedora CoreOS updates

Deleting the Virtual Machine

To clean up afterwards, the following commands will delete the VM and associated storage.

$ virsh destroy fcos
$ virsh undefine --remove-all-storage fcos

Conclusion

Fedora CoreOS provides a solid and secure operating system tailored to run applications in containers. It excels in a DevOps environment which encourages the hosts to be provisioned using declarative configuration files. Automatic updates and the ability to rollback to a previous version of the OS, bring a peace of mind during the operation of a service.

Learn more about Fedora CoreOS by following the tutorials available in the project’s documentation.

Posted on Leave a comment

Using Kubernetes ConfigMaps to define your Quarkus application’s properties

So, you wrote your Quarkus application, and now you want to deploy it to a Kubernetes cluster. Good news: Deploying a Quarkus application to a Kubernetes cluster is easy. Before you do this, though, you need to straighten out your application’s properties. After all, your app probably has to connect with a database, call other services, and so on. These settings are already defined in your application.properties file, but the values match the ones for your local environment and won’t work once deployed onto your cluster.

So, how do you easily solve this problem? Let’s walk through an example.

Create the example Quarkus application

Instead of using a complex example, let’s take a simple use case that explains the concept well. Start by creating a new Quarkus app:

$ mvn io.quarkus:quarkus-maven-plugin:1.1.1.Final:create

You can keep all of the default values while creating the new application. In this example, the application is named hello-app. Now, open the HelloResource.java file and refactor it to look like this:

@Path("/hello") public class HelloResource { @ConfigProperty(name = "greeting.message") String message; @GET @Produces(MediaType.TEXT_PLAIN) public String hello() { return "hello " + message; } } 

In your application.properties file, now add greeting.message=localhost. The @ConfigProperty annotation is not in the scope of this article, but here we can see how easy it is to inject properties inside our code using this annotation.

Now, let’s start our application to see if it works as expected:

$ mvn compile quarkus:dev

Browse to http://localhost:8080/hello, which should output hello localhost. That’s it for the Quarkus app. It’s ready to go.

Deploy the application to the Kubernetes cluster

The idea here is to deploy this application to our Kubernetes cluster and replace the value of our greeting property with one that will work on the cluster. It is important to know here that all of the properties from application.properties are exposed, and thus can be overridden with environment variables. The convention is to convert the name of the property to uppercase and replace every dot (.) with an underscore (_). So, for instance, our greeting.message will become GREETING_MESSAGE.

At this point, we are almost ready to deploy our app to Kubernetes, but we need to do three more things:

  1. Create a Docker image of your application and push it to a repository that your cluster can access.
  2. Define a ConfgMap resource.
  3. Generate the Kubernetes resources for our application.

To create the Docker image, simply execute this command:

$ docker build -f src/main/docker/Dockerfile.jvm -t quarkus/hello-app .

Be sure to set the right Docker username and to also push to an image registry, like docker-hub or quay. If you are not able to push an image, you can use sebi2706/hello-app:latest.

Next, create the file config-hello.yml:

apiVersion: v1 data: greeting: "Kubernetes" kind: ConfigMap metadata: name: hello-config 

Make sure that you are connected to a cluster and apply this file:

$ kubectl apply -f config-hello.yml

Quarkus comes with a useful extension, quarkus-kubernetes, that generates the Kubernetes resources for you. You can even tweak the generated resources by providing extra properties—for more details, check out this guide.

After installing the extension, add these properties to our application.properties file so it generates extra configuration arguments for our containers specification:

kubernetes.group=yourDockerUsername kubernetes.env-vars[0].name=GREETING_MESSAGE kubernetes.env-vars[0].value=greeting kubernetes.env-vars[0].configmap=hello-config

Run mvn package and view the generated resources in target/kubernetes. The interesting part is in spec.containers.env:

- name: "GREETING_MESSAGE"   valueFrom:   configMapKeyRef:     key: "greeting"    name: "hello-config"

Here, we see how to pass an environment variable to our container with a value coming from a ConfigMap. Now, simply apply the resources:

$ kubectl apply -f target/kubernetes/kubernetes.yml

Expose your service:

kubectl expose deployment hello --type=NodePort

Then, browse to the public URL or do a curl. For instance, with Minikube:

$ curl $(minikube service hello-app --url)/hello

This command should output: hello Kubernetes.

Conclusion

Now you know how to use a ConfigMap in combination with environment variables and your Quarkus’s application.properties. As we said in the introduction, this technique is particularly useful when defining a DB connection’s URL (like QUARKUS_DATASOURCE_URL) or when using the quarkus-rest-client (ORG_SEBI_OTHERSERVICE_MP_REST_URL).

Share

The post Using Kubernetes ConfigMaps to define your Quarkus application’s properties appeared first on Red Hat Developer.