Posted on Leave a comment

Control the firewall at the command line

A network firewall is more or less what it sounds like: a protective barrier that prevents unwanted network transmissions. They are most frequently used to prevent outsiders from contacting or using network services on a system. For instance, if you’re running a laptop at school or in a coffee shop, you probably don’t want strangers poking around on it.

Every Fedora system has a firewall built in. It’s part of the network functions in the Linux kernel inside. This article shows you how to change its settings using firewall-cmd.

Network basics

This article can’t teach you everything about computer networks. But a few basics suffice to get you started.

Any computer on a network has an IP address. Think of this just like a mailing address that allows correct routing of data. Each computer also has a set of ports, numbered 0-65535. These are not physical ports; instead, you can think of them as a set of connection points at the address.

In many cases, the port is a standard number or range depending on the application expected to answer. For instance, a web server typically reserves port 80 for non-secure HTTP communications, and/or 443 for secure HTTPS. The port numbers under 1024 are reserved for system and well-known purposes, ports 1024-49151 are registered, and ports 49152 and above are usually ephemeral (used only for a short time).

Each of the two most common protocols for Internet data transfer, TCP and UDP, have this set of ports. TCP is used when it’s important that all data be received and, if it arrives out of order, reassembled in the right order. UDP is used for more time-sensitive services that can withstand losing some data.

An application running on the system, such as a web server, reserves one or more ports (as seen above, 80 and 443 for example). Then during network communication, a host establishes a connection between a source address and port, and the destination address and port.

A network firewall can block or permit transmissions of network data based on rules like address, port, or other criteria. The firewall-cmd utility lets you interact with the rule set to view or change how the firewall works.

Firewall zones

To verify the firewall is running, use this command with sudo. (In fairness, you can run firewall-cmd without the sudo command in environments where PolicyKit is running.)

$ sudo firewall-cmd --state
running

The firewalld service supports any number of zones. Each zone can have its own settings and rules for protection. In addition, each network interface can be placed in any zone individually The default zone for an external facing interface (like the wifi or wired network card) on a Fedora Workstation is the FedoraWorkstation zone.

To see what zones are active, use the –get-active-zones flag. On this system, there are two network interfaces, a wired Ethernet card wlp2s0 and a virtualization (libvirt) bridge interface virbr0:

$ sudo firewall-cmd --get-active-zones
FedoraWorkstation interfaces: wlp2s0
libvirt interfaces: virbr0

To see the default zone, or all the defined zones:

$ sudo firewall-cmd --get-default-zone
FedoraWorkstation
$ sudo firewall-cmd --get-zones
FedoraServer FedoraWorkstation block dmz drop external home internal libvirt public trusted work

To see the services the firewall is allowing other systems to access in the default zone, use the –list-services flag. Here is an example from a customized system; you may see something different.

$ sudo firewall-cmd --list-services
dhcpv6-client mdns samba-client ssh

This system has four services exposed. Each of these has a well-known port number. The firewall recognizes them by name. For instance, the ssh service is associated with port 22.

To see other port settings for the firewall in the current zone, use the –list-ports flag. By the way, you can always declare the zone you want to check:

$ sudo firewall-cmd --list-ports --zone=FedoraWorkstation
1025-65535/udp 1025-65535/tcp

This shows that ports 1025 and above (both UDP and TCP) are open by default.

Changing zones, ports, and services

The above setting is a design decision.* It ensures novice users can use network facing applications they install. If you know what you’re doing and want a more protective default, you can move the interface to the FedoraServer zone, which prohibits any ports not explicitly allowed. (Warning: if you’re using the host via the network, you may break your connection — meaning you’ll have to go to that box physically to make further changes!)

$ sudo firewall-cmd --change-interface=<ifname> --zone=FedoraServer
success

* This article is not the place to discuss that decision, which went through many rounds of review and debate in the Fedora community. You are welcome to change settings as needed.

If you want to open a well-known port that belongs to a service, you can add that service to the default zone (or use –zone to adjust a different zone). You can add more than one at once. This example opens up the well-known ports for your web server for both HTTP and HTTPS traffic, on ports 80 and 443:

$ sudo firewall-cmd --add-service=http --add-service=https
success

Not all services are defined, but many are. To see the whole list, use the –get-services flag.

If you want to add specific ports, you can do that by number and protocol as well. (You can also combine –add-service and –add-port flags, as many as necessary.) This example opens up the UDP service for a network boot service:

$ sudo firewall-cmd --add-port=67/udp
success

Important: If you want your changes to be effective after you reboot your system or restart the firewalld service, you must add the –permanent flag to your commands. The examples here only change the firewall until one of those events next happens.

These are just some of the many functions of the firewall-cmd utility and the firewalld service. There is much more information on firewalld at the project’s home page that’s worth reading and trying out.


Photo by Jakob Braun on Unsplash.

Posted on Leave a comment

Cloning a MAC address to bypass a captive portal

If you ever attach to a WiFi system outside your home or office, you often see a portal page. This page may ask you to accept terms of service or some other agreement to get access. But what happens when you can’t connect through this kind of portal? This article shows you how to use NetworkManager on Fedora to deal with some failure cases so you can still access the internet.

How captive portals work

Captive portals are web pages offered when a new device is connected to a network. When the user first accesses the Internet, the portal captures all web page requests and redirects them to a single portal page.

The page then asks the user to take some action, typically agreeing to a usage policy. Once the user agrees, they may authenticate to a RADIUS or other type of authentication system. In simple terms, the captive portal registers and authorizes a device based on the device’s MAC address and end user acceptance of terms. (The MAC address is a hardware-based value attached to any network interface, like a WiFi chip or card.)

Sometimes a device doesn’t load the captive portal to authenticate and authorize the device to use the location’s WiFi access. Examples of this situation include mobile devices and gaming consoles (Switch, Playstation, etc.). They usually won’t launch a captive portal page when connecting to the Internet. You may see this situation when connecting to hotel or public WiFi access points.

You can use NetworkManager on Fedora to resolve these issues, though. Fedora will let you temporarily clone the connecting device’s MAC address and authenticate to the captive portal on the device’s behalf. You’ll need the MAC address of the device you want to connect. Typically this is printed somewhere on the device and labeled. It’s a six-byte hexadecimal value, so it might look like 4A:1A:4C:B0:38:1F. You can also usually find it through the device’s built-in menus.

Cloning with NetworkManager

First, open nm-connection-editor, or open the WiFI settings via the Settings applet. You can then use NetworkManager to clone as follows:

  • For Ethernet – Select the connected Ethernet connection. Then select the Ethernet tab. Note or copy the current MAC address. Enter the MAC address of the console or other device in the Cloned MAC address field.
  • For WiFi – Select the WiFi profile name. Then select the WiFi tab. Note or copy the current MAC address. Enter the MAC address of the console or other device in the Cloned MAC address field.

Bringing up the desired device

Once the Fedora system connects with the Ethernet or WiFi profile, the cloned MAC address is used to request an IP address, and the captive portal loads. Enter the credentials needed and/or select the user agreement. The MAC address will then get authorized.

Now, disconnect the WiFi or Ethernet profile, and change the Fedora system’s MAC address back to its original value. Then boot up the console or other device. The device should now be able to access the Internet, because its network interface has been authorized via your Fedora system.

This isn’t all that NetworkManager can do, though. For instance, check out this article on randomizing your system’s hardware address for better privacy.

Posted on Leave a comment

Using SSH port forwarding on Fedora

You may already be familiar with using the ssh command to access a remote system. The protocol behind ssh allows terminal input and output to flow through a secure channel. But did you know that you can also use ssh to send and receive other data securely as well? One way is to use port forwarding, which allows you to connect network ports securely while conducting your ssh session. This article shows you how it works.

About ports

A standard Linux system has a set of network ports already assigned, from 0-65535. Your system reserves ports up to 1023 for system use. In many systems you can’t elect to use one of these low-numbered ports. Quite a few ports are commonly expected to run specific services. You can find these defined in your system’s /etc/services file.

You can think of a network port like a physical port or jack to which you can connect a cable. That port may connect to some sort of service on the system, like wiring behind that physical jack. An example is the Apache web server (also known as httpd). The web server usually claims port 80 on the host system for HTTP non-secure connections, and 443 for HTTPS secure connections.

When you connect to a remote system, such as with a web browser, you are also “wiring” your browser to a port on your host. This is usually a random high port number, such as 54001. The port on your host connects to the port on the remote host, such as 443 to reach its secure web server.

So why use port forwarding when you have so many ports available? Here are a couple common cases in the life of a web developer.

Local port forwarding

Imagine that you are doing web development on a remote system called remote.example.com. You usually reach this system via ssh but it’s behind a firewall that allows very little additional access, and blocks most other ports. To try out your web app, it’s helpful to be able to use your web browser to point to the remote system. But you can’t reach it via the normal method of typing the URL in your browser, thanks to that pesky firewall.

Local forwarding allows you to tunnel a port available via the remote system through your ssh connection. The port appears as a local port on your system (thus “local forwarding.”)

Let’s say your web app is running on port 8000 on the remote.example.com box. To locally forward that system’s port 8000 to your system’s port 8000, use the -L option with ssh when you start your session:

$ ssh -L 8000:localhost:8000 remote.example.com

Wait, why did we use localhost as the target for forwarding? It’s because from the perspective of remote.example.com, you’re asking the host to use its own port 8000. (Recall that any host usually can refer to itself as localhost to connect to itself via a network connection.) That port now connects to your system’s port 8000. Once the ssh session is ready, keep it open, and you can type http://localhost:8000 in your browser to see your web app. The traffic between systems now travels securely over an ssh tunnel!

If you have a sharp eye, you may have noticed something. What if we used a different hostname than localhost for the remote.example.com to forward? If it can reach a port on another system on its network, it usually can forward that port just as easily. For example, say you wanted to reach a MariaDB or MySQL service on the db.example.com box also on the remote network. This service typically runs on port 3306. So you could forward it with this command, even if you can’t ssh to the actual db.example.com host:

$ ssh -L 3306:db.example.com:3306 remote.example.com

Now you can run MariaDB commands against your localhost and you’re actually using the db.example.com box.

Remote port forwarding

Remote forwarding lets you do things the opposite way. Imagine you’re designing a web app for a friend at the office, and want to show them your work. Unfortunately, though, you’re working in a coffee shop, and because of the network setup, they can’t reach your laptop via a network connection. However, you both use the remote.example.com system at the office and you can still log in there. Your web app seems to be running well on port 5000 locally.

Remote port forwarding lets you tunnel a port from your local system through your ssh connection, and make it available on the remote system. Just use the -R option when you start your ssh session:

$ ssh -R 6000:localhost:5000 remote.example.com

Now when your friend inside the corporate firewall runs their browser, they can point it at http://remote.example.com:6000 and see your work. And as in the local port forwarding example, the communications travel securely over your ssh session.

By default the sshd daemon running on a host is set so that only that host can connect to its remote forwarded ports. Let’s say your friend wanted to be able to let people on other example.com corporate hosts see your work, and they weren’t on remote.example.com itself. You’d need the owner of the remote.example.com host to add one of these options to /etc/ssh/sshd_config on that box:

GatewayPorts yes # OR
GatewayPorts clientspecified

The first option means remote forwarded ports are available on all the network interfaces on remote.example.com. The second means that the client who sets up the tunnel gets to choose the address. This option is set to no by default.

With this option, you as the ssh client must still specify the interfaces on which the forwarded port on your side can be shared. Do this by adding a network specification before the local port. There are several ways to do this, including the following:

$ ssh -R *:6000:localhost:5000 # all networks
$ ssh -R 0.0.0.0:6000:localhost:5000 # all networks
$ ssh -R 192.168.1.15:6000:localhost:5000 # single network
$ ssh -R remote.example.com:6000:localhost:5000 # single network

Other notes

Notice that the port numbers need not be the same on local and remote systems. In fact, at times you may not even be able to use the same port. For instance, normal users may not to forward onto a system port in a default setup.

In addition, it’s possible to restrict forwarding on a host. This might be important to you if you need tighter security on a network-connected host. The PermitOpen option for the sshd daemon controls whether, and which, ports are available for TCP forwarding. The default setting is any, which allows all the examples above to work. To disallow any port fowarding, choose none, or choose only a specific host:port setting to permit. For more information, search for PermitOpen in the manual page for sshd daemon configuration:

$ man sshd_config

Finally, remember port forwarding only happens as long as the controlling ssh session is open. If you need to keep the forwarding active for a long period, try running the session in the background using the -N option. Make sure your console is locked to prevent tampering while you’re away from it.